If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10x^2+41x=0
a = -10; b = 41; c = 0;
Δ = b2-4ac
Δ = 412-4·(-10)·0
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-41}{2*-10}=\frac{-82}{-20} =4+1/10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+41}{2*-10}=\frac{0}{-20} =0 $
| 6*5^x-3=150 | | x/5+(1-x)=-27 | | 806=26(m+2) | | 7/8x+1/2=7/8 | | 30(y+10)=750 | | 4x-8=3/4 | | 4+9x=427 | | (x-2)(x+1)=-x(x-3) | | 11x+3(x+7)=7(x+2) | | 0.4x=8-3x | | 3x+12+9x=75 | | x^2-2x=x+10 | | 435/j=15 | | 4n-2/3=34/3=n=3 | | 100-2x=14 | | -141-11x-5x=115 | | 435j= 15 | | y=√-1 | | (5x3)+(5x1/6)=201/6 | | 6n=18+8 | | 19n+4n-23n+n=16 | | 3÷x+7=5 | | 45=1/3w+7 | | 3z+8=z-12 | | 0=4x2+33x-27 | | 4b-3(-8b+2)=14+8b | | 15=5b-10 | | -1/3x=-2x+10 | | (3x-1)^-2/3=1 | | 10=x/120 | | -(8y+5)-(-7y-6)=0 | | 6x+4=9x+8 |